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Abstract

It has recently been shown that the auxiliary field method is an interesting tool
to compute approximate analytical solutions of the Schrödinger equation. This
technique can generate the spectrum associated with an arbitrary potential V (r)

starting from the analytically known spectrum of a particular potential P(r).
In the present work, general important properties of the auxiliary field method
are proved, such as scaling laws and independence of the results on the choice
of P(r). The method is extended in order to find accurate analytical energy
formulae for radial potentials of the form aP (r) + V (r), and several explicit
examples are studied. Connections existing between the perturbation theory
and the auxiliary field method are also discussed.

PACS number: 03.65.Ge

1. Introduction

Auxiliary fields, also known as einbein fields, have been known about for a long time in
quantum field theory. Initially they were introduced to remove the cumbersome square roots
appearing in relativistic theories. As an example in string field theory, let us cite the Nambu-
Goto Lagrangian which is transformed into the Polyakov Lagrangian [1]. They are also
of common use in many other fields of physics, such as supersymmetric field theories [2]
and hadronic physics [3]. A particular use of the auxiliary fields is the transformation of
a semi-relativistic kinetic energy term (

√
p2 + m2) appearing in Salpeter-type equations into

an apparently non-relativistic one (p2/(2μ)) leading to a simpler Schrödinger-like equation
[4]. Another interesting approach involving auxiliary fields is the transformation of a problem
containing a linear confining term into a new one containing a harmonic oscillator potential
which can lead to analytical expressions [5].
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Recently, it was realized [6] that auxiliary fields can be used as a tool to obtain analytical
approximate expressions for the eigenvalues and the eigenstates of a Schrödinger equation.
In this work, hereafter labelled SSB, we proposed a systematic method, called the auxiliary
field method (AFM), which gives approximate expressions for the eigenenergies of a non-
relativistic two-body system interacting through any local and central potential V (r). For
special forms of this potential, an analytical expression is available. In SSB we studied in
particular power-law and logarithmic potentials and proposed new energy formulae which are
much more accurate than those found in the literature up to now.

The search for analytical solutions of the Schrödinger equation is very interesting and the
subject of important investigations. In fact, only very few potentials give rise to an analytical
expression for the eigenenergies valid for any values of the radial quantum number n and
orbital quantum number l. The most famous are the harmonic oscillator V (r) = 1

2ωr2 and the
Coulomb potential V (r) = −κ/r .

Other potentials have analytical solutions but only for S-waves (or in a one-dimensional
case). This is in particular the case for the Morse potential, the Hulthen potential, the Hylleraas
potential or the Eckart potential. There also exist potentials which are solvable but for particular
values of their parameters. Among them, the Kratzer potential V (r) = 2D

(
1
2a2/r2 − b/r

)
is

famous and analytically solvable in the case b = a [7].
But even if an exact analytical expression is not available, it may be very interesting to

have an approximate analytical expression at our disposal. In addition to a possible benchmark
for numerical calculations, it exhibits the explicit dependence of the energies as a function of
the various parameters and of the quantum numbers. Moreover, an analytical expression is
always much less time consuming than the corresponding numerical resolution, and is thus
of very great help in the case of a search for a set of parameters for a potential relying on a
chi-square best fit.

Several methods have been invoked to find approximate analytical solutions: WKB
method, semi-classical treatment, variational methods, perturbation theory, etc. In SSB we
showed that the AFM is especially well suited to pursue this goal and presents very pleasant
features. The aim of this work, which extends the results obtained in SSB, is essentially
twofold:

• to demonstrate a number of very general and interesting properties of the AFM, in
particular the connections with the perturbation theory;

• to obtain approximate analytical expressions for a wide class of potentials, some of them
being very important and of common use in several domains of physics.

The paper is organized as follows. In the second section, we demonstrate a number of
very general properties concerning the AFM. The third section is devoted to the application
of the general theory to very specific but important potentials. The fourth section deals with a
detailed comparison of our analytical results and the corresponding numerical values. Some
conclusions are drawn in the last section.

2. General properties

2.1. Principle of the method

Our goal is the search for approximate analytical expressions of the eigenvalues for a two-body
non-relativistic Hamiltonian

H = p2

2m
+ V (r), (1)
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where m is the reduced mass, r is the relative distance between particles, p is the conjugate
momentum associated with r and V (r) is any central potential. An analytical expression for
all the eigenvalues is known explicitly only for very specific potentials P(r). The basic idea is
to rely on such potentials. In other words, we assume that we are able to obtain an analytical
expression e(a) for the Schrödinger equation

H̄ (a) |a〉 =
[

p2

2m
+ aP (r)

]
|a〉 = e(a)|a〉, (2)

in which, at this stage, a is a real parameter.
Our method needs the introduction of an auxiliary field ν, which is a priori an operator.

We recall here the principle of the method. It consists in four steps:

(i) We calculate the function (the prime denotes the derivative with respect to r)

K(r) = V ′(r)
P ′(r)

(3)

and denote by ν̂ the value of the auxiliary field which coincides with this function,

ν̂ = K(r). (4)

(ii) We denote by J = K−1 the inverse function of K. Thus, one has

r = J (ν̂). (5)

Since both V (r) and P(r) do exhibit an analytical form, the same property holds for K(r).
But it is by no means sure that J (ν̂) can be expressed analytically. The existence of an
analytical expression for J is a necessary condition for our method to obtain analytical
expressions as a final result.

(iii) We build a new Hamiltonian H̃ which depends on the auxiliary field ν through the
following expression:

H̃ (ν) = H̄ (ν) + g(ν), (6)

where H̄ is defined by (2) and where the function g(ν) is given explicitly by

g(ν) = V (J (ν)) − νP (J (ν)). (7)

This function g(ν) makes a bridge between the potential P(r) for which an analytical
expression is known and the potential V (r) for which an analytical expression is a priori
not known. The very important property is that ν̂, coming from (4), cancels the variation
of the new Hamiltonian, i.e. δH̃ (ν)/δν|ν=ν̂ = 0. Moreover, one has the additional crucial
identity H̃ (ν̂) = H , as defined by (1).

(iv) Considering now ν no longer as an operator but as a pure number and taking into account
(2), the eigenvalues of H̃ (ν) are

E(ν) = e(ν) + g(ν), (8)

where e(ν) are the eigenvalues of H̄ . Then, we determine the value ν0 that minimizes
E(ν): ∂E(ν)/∂ν|ν0 = 0. We propose to consider E(ν0) as the approximate eigenvalues
of the Hamiltonian H. In SSB, we presented a bound to test the accuracy of the method.
In order to obtain an analytical expression for these eigenvalues, we must fulfil a second
necessary condition: to be able to determine ν0 and, then, E(ν0) in an analytical way.

3
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This method is completely general and a priori valid for any potential V (r). Nevertheless,
in order to get analytical expressions we must fulfil, as we saw, two conditions: (i) first, to
be able to invert relation (4) in order to have access to the function J (ν̂) defined by (5) and
(ii) second, to be able to determine ν0 and to calculate the corresponding value E(ν0) in an
analytical way.

An idea for obtaining analytical expressions of the eigenenergies for an arbitrary potential
is the following. We start with a potential P(r) = P [0](r) for which the energies of the
corresponding Hamiltonian H [0] are exactly known. We then proceed as above to find
approximate solutions for the eigenenergies of a Hamiltonian H [1] in which the potential
is at present V (r) = P [1](r). In general, a large class of potentials can be treated in that way.
Moreover, by comparison with accurate numerical results, we can even refine the expressions
in order to be very close to the exact solution.

Considering now these approximate expressions as the exact ones, we apply once more
the AFM with P(r) = P [1](r) to obtain approximate solutions for the eigenenergies of a
Hamiltonian H [2] in which the potential is at present V (r) = P [2](r). Even if analytical
solutions for Hamiltonian H [2] were not attainable directly with P(r) = P [0](r), it may occur
that they indeed are with P(r) = P [1](r). Pursuing recursively such a procedure, one can
imagine to get analytical solutions even for complicated potentials. Presumably, the quality
of the analytical expressions deteriorates with the order of the recursion.

2.2. Expression of approximate energies

Very rare are the potentials P(r) for which an analytical solution is known for all radial
n and orbital l quantum numbers. Among them, the harmonic oscillator (ho) P(r) = r2

and the Coulomb (C) P(r) = −1/r potentials are widely used. Taking benefit of this
opportunity, the class of power-law potentials (pl) has been studied in SSB. Let us consider
P (λ)(r) = sgn(λ)rλ with sgn(λ) = λ/|λ| and λ �= 0. It has been shown in SSB that the
eigenvalues of the Hamiltonian

H
(pl)
λ (a) = p2

2m
+ a sgn(λ)rλ (9)

can be written under the form

e
(pl)
λ (a) = 2 + λ

2λ
(a|λ|)2/(λ+2)

(
N2

λ

m

)λ/(λ+2)

, (10)

where Nλ depends on n and l quantum numbers, as well as λ. This formula gives the exact
result for the two important situations:

• the harmonic oscillator potential since in this case N(ho) = Nλ=2 = 2n + l + 3/2;
• the Coulomb potential for which N(C) = Nλ=−1 = n + l + 1.

It has been shown in SSB that, for any physical values of λ (λ > −2), a good form for Nλ is
given by

Nλ = b(λ)n + l + c(λ). (11)

Some functions b(λ) and c(λ) were proposed in SSB in order to give an approximation as
precise as 10−3 for the most interesting (the lowest) values of the quantum numbers n and l.

Considering the eigenenergies (10) and (11) as the ‘exact’ ones for Hamiltonian (9), one
can apply the AFM to get the eigenenergies for Hamiltonian (1). Using the recipe given in
section 2.1 with P(r) = P (λ)(r), we find the following results:

E(ν0) = |λ|
2

ν0J (ν0)
λ + V (J (ν0)), (12)

4
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the optimal value ν0 being determined from the equation

|λ|ν0J (ν0)
λ+2 = N2

λ

m
= Yλ (13)

and the function J (ν) coming from the relation

|λ|νJ (ν)λ−1 = V ′(J (ν)). (14)

Let us emphasize that J (ν) depends only on the potential V (r) and not on the particular
eigenstate we are interested in. The value ν0 depends both on the potential (through the J

function) and on the state under consideration (through the Nλ quantity). It is important to
stress that the expression resulting from (12) suffers from two approximations:

• the AFM is based on the replacement of an operator ν by an optimal value ν0; this
approximation was discussed in detail in SSB and an estimation of the error was given;

• setting for Nλ the value (11) is also an approximation whose quality was discussed
extensively in SSB.

In the case of a harmonic oscillator λ = 2 or a Coulomb potential λ = −1, only the first type
of approximation remains.

The application to the two solvable potentials is immediate:

• For the Coulomb potential (λ = −1), one deduces

E(C)(μ0) = μ0

2J (μ0)
+ V (J (μ0)) = (N(C))2

2mJ(μ0)2
+ V (J (μ0)). (15)

The function J (μ) is determined by the condition

V ′(J (μ))J (μ)2 = μ, (16)

whereas the value μ0 is calculated from the transcendental equation

μ0J (μ0) = (N(C))2

m
. (17)

• For the harmonic oscillator (λ = 2), one has similarly

E(ho)(ν0) = ν0I (ν0)
2 + V (I (ν0)) = (N(ho))2

2mI (ν0)2
+ V (I (ν0)). (18)

The function I (ν) is determined by the condition

V ′(I (ν)) = 2νI (ν), (19)

whereas the value ν0 is calculated from the transcendental equation

ν0I (ν0)
4 = (N(ho))2

2m
. (20)

The comparison of the expression for the energies in both cases (15) and (18) clearly
shows that there must exist a link between them. This aspect is considered in the following
section and indeed we will prove a very interesting property.
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2.3. Switching from P (λ)(r) to P (η)(r)

In the preceding section, we derived the approximation Eλ that can be obtained for the
eigenvalues of Hamiltonian (1) applying the AFM with the starting potential P (λ)(r). Let us
assume that, instead of the starting potential P (λ)(r), we are interested by another starting
potential P (η)(r). Formulae (12)–(14) apply as well, changing λ into η. In particular, one
determines a function I (μ) depending on the auxiliary field μ, an optimal value μ0 depending
on a Yη quantity and the resulting energy Eη(μ0). In this last approach, let us introduce a new
field ν by the change of variable

ν = ν(μ) = |η|
|λ|μI (μ)η−λ. (21)

Using the definition of I (μ) as a function of the potential V , this new variable can be defined
as well as

ν = ν(μ) = 1

|λ|I (μ)1−λV ′(I (μ)). (22)

Using the definition of the J function (14), it is easy to show the relationship

I (μ) = J (ν(μ)). (23)

Defining ν0 = ν(μ0), a simple calculation shows that

|λ|ν0J (ν0)
λ+2 = N2

η

m
= Yη. (24)

This is exactly the expression (13) but in which the quantity Yλ has been replaced by Yη.
To achieve the demonstration, let us introduce this value ν0(Yη) in the expression of

Eλ(ν0). Using the link between ν0 and μ0, it is easy to show that

Eλ(ν0(Yη)) = |η|
2

μ0I (μ0)
η + V (I (μ0)) = Eη(ν0(Yη)). (25)

In the expression derived from the case P (λ)(r), it is sufficient to change the value Nλ by Nη

to obtain the expression derived from the case P (η)(r). We end up with the very important
conclusion that can be stated as a theorem:

If, in the expression E(Nλ) of the approximate energies resulting from the AFM with P (λ)(r),
one makes the substitution Nλ → Nη (so that E(Nλ) → E(Nη) with the same functional form
for E), one obtains the approximate eigenenergies resulting from the AFM with P (η)(r).

In a sense, as long as we use a power-law potential P (λ)(r) as starting potential, there
is a universality of the approximate AFM expression of the eigenvalue, depending only on
the potential V (r). The only reminiscence of the particular chosen potential P (λ)(r) is the
expression of Nλ, as given by (11). This result holds whatever the form chosen for the potential
V (r), even if we are unable to obtain analytical expressions for one case or the other or both.

This property was emphasized in SSB for the particular case of a power-law potential
V (r) = rλ switching from the harmonic oscillator (λ = 2) to the Coulomb potential (λ = −1).
We proved here that it is in fact totally general. It is probably related to a well-known property
in classical mechanics: one can pass from the motion of a harmonic oscillator to the Kepler
motion by a canonical transformation.

2.4. Scaling laws

Scaling laws represent an important property for non-relativistic Schrödinger equations. They
allow us to give the expression for the eigenenergies (and wavefunctions) of the most general

6
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equation in terms of the corresponding eigenenergies (and wavefunctions) of a reduced
equation which is much simpler to solve.

Let us recall briefly the scaling law for the energy. Let E(m,G, a) be the eigenvalues of
a Schrödinger equation corresponding to a system of reduced mass m subject to a potential of
intensity G and characteristic inverse length a. The scaling law gives the relationship between
E(m,G, a) and E(m′,G′, a′). Let us start from the corresponding Schrödinger equations[

− 1

2m
	r + GV (ar) − E(m,G, a)

]

(r) = 0, (26)

[
− 1

2m′ 	r + G′V (a′r) − E(m′,G′, a′)
]


 ′(r) = 0. (27)

The important point is that it is the same function V (x) which appears in both equations. In
(27), let us make the change of variables r = αx and multiply it by χ . Now, we choose the
arbitrary parameters α and χ in order to fulfil the conditions χ/(m′α2) = 1/m and αa′ = a.
In other words, we impose the following values:

α = a

a′ , χ = m′

m

( a

a′
)2

. (28)

With these values, (27) can be recast into the form[
− 1

2m
	x + G′ m

′

m

( a

a′
)2

V (ax) − m′

m

( a

a′
)2

E(m′,G′, a′)
]


 ′
( a

a′ x
)

= 0. (29)

Equation (26) can be recovered, provided one makes the identification G = G′(m′/m)(a/a′)2

and a similar relation for the energies.
The scaling law is thus expressed in its most general form as

E(m,G, a) = m′

m

( a

a′
)2

E

(
m′,G′ = G

m

m′

(
a′

a

)2

, a′
)

. (30)

In fact, it is always possible to define the function V (x) so that a′ = 1. In what follows, and
without loss of generality, we will apply the scaling law for energies under the form

E(m,G, a) = m′a2

m
E

(
m′,G′ = mG

m′a2
, 1

)
. (31)

This equality is very powerful since it is valid for the exact eigenvalues of a non-relativistic
Schrödinger equation based on an arbitrary central potential. It allows us to express the
energy in terms of a dimensionless quantity and some dimensioned factors, as we will see
below.

The purpose of this section is to prove that the scaling law for energy, as expressed by (31)
still holds for the approximate expressions derived from a treatment based on auxiliary fields.
It was observed in SSB but no proof was given. The only assumption is that the function
P is homogeneous, that is we impose the property P(ar) = apP (r) which also implies
P ′(ar) = ap−1P ′(r). Let us denote here by M(m,G) the eigenvalues of the Hamiltonian

H̄ (G) = p2

2m
+ GP(r). (32)

In our treatment, the analytical expression for M(m,G) is supposed to be known. We
are searching for the approximate expression of the eigenvalues of Hamiltonian (1) with
V (r) = Gv(ar). We call J the inverse function of v′/P ′; consequently we have the property
v′(J (X)) = XP ′(J (X)).

7
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Let us apply the recipe described in section 2.1. The function K(r) = Gav′(ar)/P ′(r) =
Gapv′(ar)/P ′(ar) must be identified with the auxiliary field ν̂ and its inversion provides r(ν̂)

with

ar(ν̂) = J (ν̂/(Gap)). (33)

The auxiliary Hamiltonian to be considered reads

H̃ (ν) = p2

2m
+ νP (r) + G[v(J (μ)) − μP(J (μ))] (34)

with

μ(ν) = ν

Gap
. (35)

The corresponding eigenenergies are thus

E(m,G, a; ν) = M(m, ν) + G[v(J (μ)) − μP(J (μ))]. (36)

The next step now is the determination of the value ν0 which minimizes this value of E. A
simple calculation shows that the value of μ0 = μ(ν0) is explicitly given by

apM ′(m,Gapμ0) = P(J (μ0)), (37)

where M ′(m, ν) = ∂M(m, ν)/∂ν.
Lastly, the energy E(m,G, a) we are looking for is just the value E(m,G, a; ν0). The

final expression is therefore

E(m,G, a) = M(m,Gapμ0) + G[v(J (μ0)) − μ0P(J (μ0))]. (38)

Since (31) is valid whatever the potential, it is in particular valid for the energies M. One
deduces the following relations:

M(m′,mGμ′
0/(m

′a2)) = (m/(m′a2))M(m,Gapμ′
0) (39)

and, after differentiation,

M ′(m′,mGμ′
0/(m

′a2)) = apM ′(m,Gapμ′
0). (40)

Now let us consider the value

E(m′,G′ = (mG)/(m′a2), 1) = M(m′,mGμ′
0/(m

′a2)) (41)

+ (mG)/(m′a2)[v(J (μ′
0)) − μ′

0P(J (μ′
0))]. (42)

The value of μ′
0 is obtained from (see (37) applied with a = 1)

M ′(m′,mGμ′
0/(m

′a2)) = P(J (μ′
0)) (43)

which, because of the property (40), can be transformed into

apM ′(m,Gapμ′
0) = P(J (μ′

0)). (44)

A comparison between (37) and (44) immediately implies that μ′
0 = μ0. Thanks to (39), this

last identity inserted in (41) proves that

E(m,G, a) = m′a2

m
E

(
m′,G′ = mG

m′a2
, 1

)
. (45)

But this result is precisely what we expect from the scaling law (see (31)).
We thus proved that scaling law for energy holds as well for the approximate expressions

derived by the AFM. This result is almost general in the sense that it is valid whatever the
potential under consideration, even if we are unable to obtain analytical solution. The only
restriction is that the function P(r) is homogeneous. This is of no consequence since the
potential P(r) = sgn(λ)rλ is used in practice.

8
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2.5. Extension of the method

Given a potential V (r), the method for obtaining approximate solutions using auxiliary fields
has been presented extensively in section 2.1. This method can be extended without difficulty
for a Hamiltonian of type

Ha = p2

2m
+ aP (r) + V (r). (46)

One introduces an auxiliary field as before forgetting about the aP (r) contribution. The first
three steps of the algorithm remain unchanged. Thus the ν̂ field is the same, as is the same
the function g(ν). The only difference arises in the expression (6) of H̃ and H̄ where νP (r)

has to be replaced by (a + ν)P (r). As a consequence, the corresponding energy (8) has to be
replaced by

Ea(ν) = e(a + ν) + g(ν). (47)

Ea(ν) is an eigenvalue of the Hamiltonian

H̃ a(ν) = H̄ (a + ν) + g(ν), (48)

where H̄ is defined by (2) and where e(a + ν) is an eigenvalue of Hamiltonian H̄ (a + ν).
An eigenstate of Hamiltonians H̃ a and H̄ (a + ν) is denoted |a + ν〉, and we have e(a + ν) =
〈a + ν|H̄ (a + ν)|a + ν〉. If ν0 is the value of ν which minimizes (47), then we could expect that

Ea(ν0) = e(a + ν0) + g(ν0) (49)

is a good approximation of Ea , an eigenvalue of Hamiltonian (46). It seems that (47) is
very similar to (8). Nevertheless, the small difference is important, because, even if the
determination of ν0 from (8) is technically easy, it may happen that the determination from
(47) could be much more involved.

Using the Hellmann–Feynman theorem [8] as in SSB, it can be shown that

〈a + ν0|P(r)|a + ν0〉 = P(J (ν0)). (50)

So, J (ν0) is a kind of ‘average point’ for the potential P(r). If functions P(r) and V (r) are
not too different, one could expect that

〈a + ν0|V (r)|a + ν0〉 ≈ V (J (ν0)), (51)

and, in particular, that (see (4) and (5))

〈a + ν0|ν̂|a + ν0〉 ≈ ν0. (52)

Within this condition, the optimal value of the constant replacing the auxiliary field operator is
close to the mean value of this operator, as mentioned in SSB. So, the AFM could actually be
considered as a ‘mean field approximation’ with respect to a particular auxiliary field which
is introduced to simplify the calculations. As is also shown in SSB, using (50), one obtains

Ea(ν0) − Ea � V (J (ν0)) − 〈a + ν0|V (r)|a + ν0〉. (53)

Except Ea , all quantities can be computed analytically in principle. So an estimation of the
accuracy of the approximate eigenvalue Ea(ν0) can be obtained.

It is very instructive to apply (47) for the potential P(r) = P (η)(r). In this case, the
function J (ν) is unchanged and still given by (14) (with the obvious change λ → η), while
the new value of ν0 is given, instead of (13), by

|η|(a + ν0)J (ν0)
η+2 = N2

η

m
(54)

9
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and the corresponding value of the energy by

E(ν0) = sgn(η)
(2 + η)a + ην0

2
J (ν0)

η + V (J (ν0))

= sgn(η)
(2 + η)a + ην0

2

(
N2

η

m|η|(a + ν0)

)η/(2+η)

+ V (J (ν0)). (55)

In this case, the virial theorem states that

e(a + ν0) = λ + 2

2
〈a + ν0|(a + ν0)sgn(λ)rλ|a + ν0〉, (56)

with e(z) given by (10). It is then easy to verify explicitly the equality (50) with J (ν0) given
by (54). These relations also imply that

〈a + ν0|rλ|a + ν0〉 = J (ν0)
λ. (57)

But, an outcome of (51) is 〈a + ν0|r|a + ν0〉 ≈ J (ν0) with J (ν0) given by (54). So this relation
is equivalent to the approximation 〈a + ν0|rλ|a + ν0〉 ≈ 〈a + ν0|r|a + ν0〉λ.

With this in mind, a potential that is worthwhile to be studied is the sum of two power-law
potentials, namely

V (r) = sgn(η)arη + sgn(λ)brλ. (58)

The above considerations show that the J (ν) function is given by

J (ν) =
( |η|ν

|λ|b
)1/(λ−η)

, (59)

with the consequence that the optimal value ν0 is extracted from the equation

(a + ν0)ν
(η+2)/(λ−η)

0 = N2
η (|λ|b)(η+2)/(λ−η)

m|η|(λ+2)/(λ−η)
. (60)

In general, one does not have an analytical expression for the root of such an equation. This
is possible only for very specific values of the powers η and λ.

In this paper, we will study such a problem for the most favourable cases, where η is
chosen to give an exact expression for the eigenvalues (in practice η = 2 and η = −1) and
where λ is chosen in order to have an analytical root.

2.6. Relation between AFM and perturbation theory

Let us assume that V (r) = σv(r) with σ small enough so that σv(r) � aP (r). If σ is
strictly 0, (46) and (48) show that ν, and hence ν0, vanishes. Switching on the potential gives
a non-vanishing but small value of ν0. Indeed, ν̂ = σv′(r)/P ′(r), so we can expect that
ν0 ∝ O(σ). Let us remark that J (0) can have a finite value, as can be seen on (54) for the
particular case P(r) = P (η)(r).

From results of the previous section, we can write

Ea(ν) = e(a + ν) + σv(J (ν)) − νP (J (ν)). (61)

Using the definition (4), the condition ∂Ea(ν)/∂ν|ν=ν0 = 0 implies that

∂e(a + ν)

∂ν

∣∣∣∣
ν=ν0

= e′(a + ν0) = P(J (ν0)). (62)

It is interesting to compare this relation with (50). Equation (61) turns then into

Ea(ν0) = e(a + ν0) − ν0e
′(a + ν0) + σv(J (ν0)). (63)

10
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Expanding e(a +ν0) and e′(a +ν0) in powers of σ and keeping only the terms O(σ), we obtain

Ea(ν0) ≈ e(a) + σv(J (ν0)). (64)

For small values of σ , the contribution of σv(r) can also be computed in perturbation.
With the notations given above, we have then

Epert. = 〈a|Ha|a〉 = e(a) + σ 〈a|v(r)|a〉, (65)

where |a〉 is an eigenstate of the Hamiltonian H̄ (a). Since |a +ν0〉 and |a〉 differ only by terms
O(σ), we have (see (50))

P(J (ν0)) = 〈a + ν0|P(r)|a + ν0〉 = 〈a|P(r)|a〉 + O(σ). (66)

If the condition (51) is fulfilled, we can also write

〈a|v(r)|a〉 ≈ v(J (ν0)) + O(σ). (67)

Using this result in (65), we see that Epert. and Ea(ν0) differ only by terms O(σ 2). Thus,
the AFM and the perturbation theory give exactly the same results at first order provided
V (r) do not differ too strongly from P(r). Let us remark that the perturbation method needs
the computation of 〈a|v(r)|a〉. The AFM shows that this calculation can be replaced by the
computation of v(J (ν0)) which could be simpler in some particular cases.

3. Application to special potentials

In SSB, we exploited the AFM for power-law potentials V (r) = brλ. It was shown that
an analytical expression for the energies exists for any value of λ (we mainly focused our
attention on values of λ comprised between −1 and +2) and is given by (10). In this section,
we take benefit of the remark of section 2.5 to study potentials of the form aP (r)(η) ± brλ.
As stated above, an analytical expression is not necessarily available. We will examine first in
which cases we do have an analytical expression, and then we will investigate in more details
some of them. In the following, it is assumed that a > 0, b > 0 and −2 < λ � 2.

3.1. Solvable potentials

Let us examine first the case P(r) = r2. Application of the general method to this particular
case leads to the following equation for the determination of ν0 (see (60)):

a ± ν0 = Xν
4

2−λ

0 , (68)

where X = X(m, b,N(ho)) is some function of the parameters whose expression does not
matter for our purpose. This equation is obviously a transcendental equation for which an
analytical solution does not exist automatically. The only cases for which we are sure that an
analytical solution exists is when it can be transformed into a polynomial of degree less than
or equal to 4. In order to investigate this condition, let us consider 4/(2 − λ) = p/q as a
rational number (p and q are relatively prime). Calling x = ν

1/q

0 , (68) is recast as

a ± xq = Xxp. (69)

All the solvable potentials should verify the conditions 1 � p � 4, 1 � q � 4. An exhaustive
research of all the solvable potentials leads to the following values of the power λ:

λ = −2, −1, − 2
3 , 2

3 , 1. (70)

11
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We will study in detail the cases:

• λ = −2 because it corresponds to a centrifugal term with a real parameter instead of the
usual l(l + 1) term;

• λ = −1 because it corresponds to a simplified potential for hadronic systems with a
short-range Coulomb potential and a quadratic confinement;

• λ = 1 because this anharmonic potential is sometimes used in molecular physics.

Now we investigate the case P(r) = −1/r . The equation corresponding to the
determination of ν0 then reads for −1 < λ � 2 (see (60))

(a ± ν0)ν
1

1+λ

0 = Z, (71)

where again Z = Z(m, b,N(C)) is some unimportant function. Introducing again the integers
p and q such that 1/(1 + λ) = p/q and x = ν

1/q

0 , (71) becomes

(a ± xq)xp = Z. (72)

All the possibilities to choose p and q such that p + q � 4 are suitable. The list of solvable
potentials is given below:

λ = − 2
3 , − 1

2 , 1, 2. (73)

Among them we will study:

• λ = 2 because it corresponds to a potential −a/r + br2 which is already studied with
P(r) = r2. This is the only potential that can be described with either P(r) = r2 or
P(r) = −1/r and this property allows very fruitful comparisons.

• λ = 1 because it corresponds to the funnel potential (Coulomb + linear) which is widely
used in hadron spectroscopy [4].

It could also be interesting to introduce potentials with λ < −1 but with the restriction
that it is repulsive at the origin (for instance, Van der Walls forces or Lenhard–Jones type of
potentials). In this case, the equation determining ν0 is given by

a − ν0 = Zν
1

|λ|−1

0 , (74)

which can be transformed with 1/(|λ| − 1) = p/q and x = ν
1/q

0 into

a − xq = Zxp. (75)

The set of all solvable potentials is provided with the list below:

λ = −5, −4, −3, − 5
2 , − 7

3 , −2, − 7
4 , − 5

3 , − 3
2 , − 4

3 , − 5
4 . (76)

In this list, we will just consider the case:

• λ = −2 because the corresponding potential, known as the Kratzer potential, exhibits its
spectrum under an analytical form for all values of radial quantum number n and orbital
quantum number l.

3.2. Kratzer potential

The Kratzer potential [7] is defined as

V (r) = a2

r2
− 2a

r
. (77)

12
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It presents some interest as a benchmark since it is one of the rare potentials for which one
knows an exact analytical expression of the energies valid for any n and l quantum numbers.
Explicitly, one has

E(n, l) = − 2ma2

[n + 1/2 +
√

(l + 1/2)2 + 2ma2]2
. (78)

Applying the AFM with P(r) = −1/r to this potential leads to the following equation
giving the energies as a function of the auxiliary field ν (in this section N = N(C) = n + l + 1):

E(ν) = − m

2N2
(2a − ν)2 − ν2

4a2
. (79)

The minimization with respect to ν provides the value

ν0 = 4ma3

2ma2 + N2
(80)

which, inserted in (79), gives the desired result

E(K)(n, l) = − 2ma2

[2ma2 + (n + l + 1)2]
. (81)

Let us remark that the approximate value E(K) presents the correct asymptotic behaviour for
large n and for large l. Just to have an idea of the quality of this approximation, let us calculate
the difference δ between the denominators of E and E(K). It is just a matter of simple algebra
to find

δ = (2n + 1)(l + 1/2)

⎡
⎣1 −

√
1 +

2ma2

(l + 1/2)2

⎤
⎦ . (82)

Consequently, for small intensity and/or mass, ma2 � 1, or for large angular momentum,
l 
 1, the approximate value tends to the exact one and we have more explicitly

δ → −(2n + 1)
ma2

(l + 1/2)
. (83)

This behaviour is easily understandable because, under those conditions, the contribution due
to 1/r is predominant as compared to the contribution of 1/r2, and both expressions tend
towards the same exact Coulomb result.

3.3. Quadratic + centrifugal potential

We consider now the potential (for an attractive centrifugal potential, not all values of b are
relevant [9])

V (r) = ar2 ± b

r2
. (84)

Incorporating the term ±b/r2 into the l(l + 1)/r2 term already present in p2 allows us to get
the exact eigenvalue using the same kind of arguments as those developed in the harmonic
oscillator case [7]. Explicitly, we obtain

E(n, l) =
√

a

2m

[
2(2n + 1) +

√
(2l + 1)2 ± 8mb

]
. (85)

Using the AFM with P(r) = r2, the energies are given by (in this section N = N(ho) =
2n + l + 3/2)

E(ν) =
√

2

m
N(a ∓ ν)1/2 ± 2

√
bν1/2. (86)
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Setting Y = 2mb/N2, the value ν0 that minimizes this energy comes from a first degree
equation and reads

ν0 = aY

1 ± Y
. (87)

Substituting this value into the energy (86), one obtains a very simple expression for the
approximate energy

E(qc)(m, a, b; n, l) = 2

√
a(N2 ± 2mb)

2m
. (88)

This quantity and the corresponding exact one depend on three parameters m, a, b, but
we know that the general scaling law properties allow us to write them in a more pleasant form

E(m, a, b; n, l) =
√

a

2m
ε(2mb; n, l), (89)

where ε(β; n, l) is an eigenvalue of the reduced Schrödinger equation for which the
Hamiltonian depends now on a single dimensionless parameter β

H = p2 + r2 ± β

r2
. (90)

The exact eigenvalues of this Hamiltonian are given by

ε(β; n, l) = 2(2n + 1) +
√

(2l + 1)2 ± 4β. (91)

The approximate values immediately come from (88)

ε(qc)(β; n, l) = 2
√

N2 ± β. (92)

One can check that the relative error between ε and ε(qc) decreases as l−3 for a fixed value
of n and decreases as n−1 for a fixed value of l. This behaviour is easily understandable
because, for large values of the quantum numbers, the contribution due to r2 is predominant
as compared to the contribution of 1/r2 and both expressions tend towards the same exact
harmonic oscillator result.

Let us assume that β � 1; a Taylor expansion truncated to first order leads to

ε(qc)(β; n, l) ≈ 2N ± β

N
. (93)

In particular for β = 0, one recovers the exact value 2N , as expected. It is easy to check that
this expression can also be obtained by perturbation theory, as expected from section 2.6.

3.4. Some reduced polynomial equations

The potentials that remain to be studied will need the solutions of cubic and quartic equations.
In order to simplify as much as possible the formulae, we found interesting to put them in a
form that makes the roots as simple as possible. The corresponding notations will be used in
the following.

3.4.1. Cubic equation. It is interesting to work with a cubic equation of the form

x3 + 3x − 2Y = 0. (94)

There exists only one positive root given analytically by

F(Y ) = [
Y +

√
1 + Y 2

]1/3 − [
Y +

√
1 + Y 2

]−1/3
. (95)

14



J. Phys. A: Math. Theor. 41 (2008) 425301 B Silvestre-Brac et al

When Y � 1, one has x close to 0 so that x3 � x and the behaviour of the root is simply

F(Y ) ≈ 2Y

3
, if Y � 1. (96)

When Y 
 1, x is large so that 3x is negligible with respect to x3 and we have the following
behaviour:

F(Y ) ≈ (2Y )1/3, if Y 
 1. (97)

3.4.2. Quartic equation. The quartic equation which gives the most pleasant form for the
roots is

4x4 ± 8x − 3Y = 0. (98)

For each sign, there exists only one positive root given analytically by

G±(Y ) = ∓ 1
2

√
V (Y ) + 1

2

√
4(V (Y ))−1/2 − V (Y ), (99)

with

V (Y ) = (
2 +

√
4 + Y 3

)1/3 − Y
(
2 +

√
4 + Y 3

)−1/3
. (100)

When Y � 1, one has x4 � x and the behaviour of the roots is simply

G+(Y ) ≈ 3Y

8
if Y � 1 (101)

and

G−(Y ) ≈ 21/3 +
Y

8
if Y � 1. (102)

When Y 
 1, x is large so that 8x is negligible with respect to 4x4 and we have the following
behaviour:

G±(Y ) ≈ (3Y/4)1/4 if Y 
 1. (103)

3.5. Anharmonic potential

The potential under consideration reads

V (r) = ar2 + 2br. (104)

The interest for such a potential is discussed in section 3.1. Obviously, one must take
P(r) = r2 in the AFM and the energies to be considered are given by (in this section
N = N(ho) = 2n + l + 3/2)

E(ν) =
√

2

m
N(a + ν)1/2 +

b2

ν
. (105)

Let us introduce the parameter

Y = 8

3
a

(
N2

mb4

)1/3

(106)

and the new variable

x = 3Y

8a
ν. (107)

The equation that leads to the minimization of the energy is then

4x4 − 8x − 3Y = 0. (108)
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This is the reduced quartic equation studied in the preceding section. The solution is given by
x0(Y ) = G−(Y ) (see (99)). Substituting this value into the energy (105) and making a little
algebra leads to the desired approximate energy

E(an)(m, a, b; n, l) = 3b2

8a
Y

(
G2

−(Y ) +
1

G−(Y )

)
, (109)

with Y given by (106).
As in the previous case, this quantity and the corresponding exact one depend on three

parameters m, a, b, but the general scaling law allows us to write them in terms of a reduced
quantity depending on a single parameter β

E(m, a, b; n, l) =
√

2a

3m
ε

(
3b2

16

√
3m

2a3
; n, l

)
, (110)

where ε(β; n, l) is an eigenvalue of the reduced Schrödinger equation for the Hamiltonian

H = p2

4
+ 3r2 + 8

√
βr. (111)

The approximate value corresponding to this reduced equation follows from (109):

ε(an)(β; n, l) = 2βY

(
G2

−(Y ) +
1

G−(Y )

)
, Y =

(
N

β

)2/3

. (112)

The parameter β could also be associated with the quadratic potential, but this case less
interesting is not considered here.

Let us assume that β � 1; a Taylor expansion truncated to first order leads to

ε(an)(β; n, l) ≈
√

3N + 4

√
2βN√

3
. (113)

In particular for β = 0, one recovers the exact value
√

3N , as should be. This result also
comes from the perturbation theory.

The limit β → ∞ is not physically relevant, but it is interesting to consider it in order to
check the formula. In this limit, we find

ε(an)(β; n, l) = 3(4βN2)1/3 + O(β−1/3). (114)

The dominant term is the result expected for a pure linear potential, as given by (10).

3.6. Quadratic + Coulomb potential

In this section, we study the quadratic + Coulomb potential defined as

V (r) = ar2 − b

r
. (115)

The interest for such a potential is discussed in section 3.1. Let us illustrate the AFM method
with the option P(r) = r2 so that N = N(ho) = 2n + l + 3/2. The energies depending on the
auxiliary field ν are given in this case by

E(ν) =
√

2

m
N(a + ν)1/2 − 3

(
b2ν

4

)1/3

. (116)

Let us introduce the parameter

Y = 8N2

3m

(
4a

b4

)1/3

(117)
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and the new variable

x =
(

2a

ν

)1/3

. (118)

The equation that leads to the minimization of the energy is then

4x4 + 8x − 3Y = 0. (119)

This reduced quartic equation was studied previously. The solution is given by x0(Y ) = G+(Y )

(see (99)). Substituting this value into the energy (116), one is led, after some manipulations,
to the desired approximate energy

E(qC)(m, a, b; n, l) = 3

4

(
ab2

2

)1/3 [
Y

G2
+(Y )

− 4

G+(Y )

]
, (120)

with Y given by (117).
One can check that, starting with P(r) = −1/r and performing the same kind of algebra,

the approximate energy is given by exactly the same equation as (120), but this time with the
Y parameter given by (117) in which N(ho) is replaced by N(C). This property is a very nice
check of the general prescription demonstrated in section 2.3.

The quantity (120) and the corresponding exact one depend again on three parameters
m, a, b, but the general scaling law allows us to write them in terms of a reduced quantity
depending on a single dimensionless parameter β. One can imagine two formulations
depending on whether β is part of the quadratic contribution or of the Coulomb contribution:

E(m, a, b; n, l) = 4

√
2a

3m
ε

(
1

4

(
54m3b4

a

)1/6

; n, l

)
, (121)

E(m, a, b; n, l) = 3mb2

16
η

(
4
( a

54m3b4

)1/6
; n, l

)
. (122)

The ε and η energies are the eigenvalues of the reduced Schrödinger equations for the respective
Hamiltonians Hε and Hη:

Hε = 3p2

16
+

r2

4
− β3/2

r
, (123)

Hη = 3p2

16
−

√
2

r
+ β ′6r2. (124)

The approximate values corresponding to these reduced Hamiltonians follow from (120):

ε(qC)(β; n, l) = 3β

8

[
Y

G2
+(Y )

− 4

G+(Y )

]
, Y =

(
N

β

)2

, (125)

η(qC)(β ′; n, l) = 3β ′2

4

[
Y

G2
+(Y )

− 4

G+(Y )

]
, Y = (

Nβ ′)2
. (126)

Let us assume that, β � 1, that is V (r) � P(r):

• A Taylor expansion truncated to first order for the formulation based on the ε form leads
to

ε(qC)(β; n, l) ≈
√

3

4
N −

√
2β3

N
√

3
. (127)

In particular for β = 0, one recovers the exact value
√

3N/4 if N = N(ho).
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• The Taylor expansion for the formulation based on the η form gives

η(qC)(β ′; n, l) ≈ − 8

3N2
+

9β ′6N4

128
. (128)

In particular for β ′ = 0, one recovers the exact value −8/(3N2) if N = N(C).

In all cases, the approximate formulae resulting from AFM agree with the result of perturbation
theory.

The limit β → ∞ is interesting to consider in order to check the formulae:

•
ε(qC)(β; n, l) = − 4β3

3N2
+ O(β−2). (129)

If N = N(C), the dominant term is the exact result for a Coulomb potential.
•

η(qC)(β ′; n, l) =
√

3

2
β ′3N + O(β ′3/2

). (130)

If N = N(ho), the dominant term is the exact result for a quadratic potential.

Let us emphasize the point that both (123) and (124) can be related to the scaling laws
developed in section 2.4. As a consequence, it can be shown that both the exact eigenvalues
and the AFM approximate ones fulfil the relation

ε(β; n, l) = β3

2
η(1/β; n, l). (131)

It is worth mentioning that analytical solutions of the Schrödinger equation with quadratic
plus Coulomb potentials are presented in [10], within the framework of a two-dimensional
system of two-interacting electrons (−1/r) in a confining magnetic field (r2). Closed-
form solutions are found for particular values of the magnetic field and spatial confinement
length. It is argued that a generalization to a three-dimensional space is possible. But,
as the corresponding formulae are not given explicitly, a comparison with our results is not
available. More generally, the Schrödinger equation with a −a/r+br+cr2 potential (particular
cases are studied in sections 3.6 and 3.7) is directly linked with the biconfluent Heun’s
equation [11].

3.7. Funnel potential

In this section, we are concerned with the funnel potential defined as

V (r) = ar − b

r
. (132)

This potential is particularly important and its interest is discussed in section 3.1. Let us
recall that it is widely used in hadronic spectroscopy and corresponds to a linear confinement
coupled to a short-range Coulomb contribution [4]. Finding approximate analytical values
for the energies corresponding to this potential is thus a very interesting question. To our
knowledge such formulae are not proposed in the literature.

Naturally, one must apply the AFM method with P(r) = −1/r so that N = N(C) =
n + l + 1. The energies depending on the auxiliary field ν can be calculated following the
prescription detailed in section 2.5. Explicitly, one finds

E(ν) = −m(b + ν)2

2N2
+ 2

√
aν1/2. (133)

18



J. Phys. A: Math. Theor. 41 (2008) 425301 B Silvestre-Brac et al

Let us introduce the parameter

Y = 3

2
N2

√
3a

m2b3
(134)

and the new variable

x =
√

3ν

b
. (135)

The equation that must be solved to minimize the energy is

x3 + 3x − 2Y = 0. (136)

This reduced cubic equation was studied previously. The solution is given by x0(Y ) = F(Y )

(see (95)). Inserting this value into the energy (133), one finds the expression of the
approximate energy

E(f)(m, a, b; n, l) =
√

3ab

[
Y

F 2(Y )
− 2

F(Y )

]
, (137)

with Y given by (134). Let us mention that another form of this equation can be found thanks
to the following relation:

Y

F 2(Y )
− 2

F(Y )
= sinh θ − 1

4 sinh θ
, (138)

with the change of variables Y = sinh(3θ).
The quantity (137) and the corresponding exact one depend again on three parameters

m, a, b, but the general scaling law allows us to write them in terms of a reduced quantity
depending on a single dimensionless parameter β. In hadronic physics, the dominant
interaction between a quark and an antiquark is a confining linear potential [4]. So, although
the linear potential has no analytical exact solution for all values of the quantum numbers, it
is also interesting to consider two formulations depending on whether β is part of the linear
contribution or of the Coulomb contribution:

E(m, a, b; n, l) = 3

(
a2

2m

)1/3

ε

((
4m2b3

27a

)1/4

; n, l

)
, (139)

E(m, a, b; n, l) = 2mb2

35/3
η

((
27a

4m2b3

)1/4

; n, l

)
. (140)

The ε and η energies are the eigenvalues of the reduced Schrödinger equations for the respective
Hamiltonians Hε and Hη:

Hε = p2

3
+

r

3
− β4/3

r
, (141)

Hη = p2

3
− 31/3

r
+ β ′4r. (142)

The approximate values corresponding to these reduced Hamiltonian follow from (137):

ε(f)(β; n, l) = β2/3

[
Y

F 2(Y )
− 2

F(Y )

]
, Y =

(
N

β

)2

, (143)

η(f)(β ′; n, l) = 32/3β ′2
[

Y

F 2(Y )
− 2

F(Y )

]
, Y = (Nβ ′)2. (144)
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Let us assume that β � 1, that is V (r) � P(r):

• The Taylor expansion for the formulation based on the ε form gives

ε(f)(β; n, l) ≈ N2/3

22/3
−

(
β4

2N2

)1/3

. (145)

In particular for β = 0, one recovers the value expected for a pure linear potential, as
given by (10).

• The Taylor expansion for the formulation based on the η form gives

η(f)(β ′; n, l) ≈ − 35/3

4N2
+

2N2β ′4

34/3
. (146)

In particular for β ′ = 0, one recovers the exact value −35/3/(4N2).

In all cases, the approximate formulae resulting from AFM agree with the result of perturbation
theory.

The limit β → ∞ is interesting to consider in order to check the formulae:

•

ε(f)(β; n, l) = −3β8/3

4N2
+ O(β−4/3). (147)

The dominant term is the exact result for a Coulomb potential.
•

η(f)(β ′; n, l) = (
3
2β ′4N

)2/3
+ O(β ′4/3

). (148)

The dominant term is the result expected for a pure linear potential, as given by (10).

Here again, both (141) and (142) can be related to the scaling laws. As a consequence, it
can be shown that both exact eigenvalues and AFM approximate ones fulfil the relation

ε(β; n, l) = β8/3

32/3
η(1/β; n, l). (149)

4. Comparison with numerical results

In the previous section, approximate analytical forms for eigenvalues of several Hamiltonians
were found. The formulae depend on the quantum numbers n and l through a factor N. This
number could be taken as N(ho), N(C) or even Nλ if the potential P(r) chosen is the power-law
potential P (λ)(r) (see section 2.3). If we look, for instance, at Hamiltonian (123), it is clear
that it reduces to a harmonic oscillator when β = 0. In this case, the choice N = N(ho) gives
the exact result. When β → ∞, the Coulomb part dominates and the choice N = N(C) is
expected to yield the exact result asymptotically.

All dimensionless Hamiltonians considered above depend on a parameter β. The variation
of the eigenvalues being smooth for the variation of β, we can assume that the number N,
giving the optimal values for a selected set of these eigenvalues, is also a smooth function of
β. From considerations above, the functional form

N(β) = b(β)n + l + c(β) (150)

seems reasonable. If, in the limits β → 0 and β → ∞, the Hamiltonian reduces to a known
form, the values N(0) and N(∞) can be computed. But for finite values of β, we cannot
predict the correct behaviour. It is then necessary to focus our attention on numerical solutions.
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Figure 1. Best values of the coefficients b(β) and c(β) to parameterize the eigenvalues of
Hamiltonian (153): numerical fit with (151) (dots); functions (154) with set 1 of parameters from
table 1 (solid line); same with set 2 (dashed line).

Very accurate eigenvalues εnum(β; n, �) for Hamiltonians defined above can be obtained
numerically with the Lagrange mesh method [12]. It is very accurate and easy to implement.
In order to find the best possible values for coefficients d(β) (d stands for b or c), we will use
the following measure:

χ(β) = 1

16

3∑
n=0

3∑
�=0

(εnum(β; n, �) − εapp(β; n, �))2, (151)

where εapp(β; n, �) are values obtained from our approximate formulae. Other choices are
possible but we find this one very convenient. The analytical form εapp depends on N(β)

which depends on coefficients d. For each value of β, optimal values for the d coefficients,
dmin(β), can be determined by minimizing χ(β). Then, with a set {dmin(β)} for a given set
{β}, a functional form dfit(β) can be fitted with the following measure:

χ(d) =
∑
{β}

(dmin(β) − dfit(β))2. (152)

Again, other choices are possible but we find this one very convenient. We will now try to
determine the best form of coefficients d(β) for some of the potentials studied above.

4.1. Improvement for anharmonic potential

The dimensionless Hamiltonian proposed here for the anharmonic potential is

H = p2

4
+ 3r2 + 8

√
βr. (153)

Approximate eigenvalues are given by (112). With (150), the exact result will be obtained
for b(0) = 2 and c(0) = 3/2. When β → ∞, the linear part dominates and, from results
obtained in SSB, we could expect that b(∞) ≈ π/

√
3 ≈ 1.814 and c(∞) ≈ √

3π/4 ≈ 1.360.
By minimizing our measure χ(β), we found the optimal values of b(β) and c(β) for several
finite values of β. The results are plotted with dots in figure 1. One can clearly see the smooth
transition between two domains for zero and infinite values of β. This corresponds to the
transition between two potentials not too different, a linear one and a quadratic one.

We tried to fit the numerical points with various functions and found that the best result is
obtained for sections of hyperbola, both for b(β) and c(β). The parameterization retained is

b(β) = p1β + p2

β + p3
, c(β) = q1β + q2

β + q3
. (154)
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Table 1. Values of parameters pi and qi for (154). Fixed parameters are marked by a *.

p1 p2 p3 q1 q2 q3

Set 1 π/
√

3* 2p3* 0.835
√

3π/4* 3q3/2* 0.445
Set 2 1.826 1.485 0.747 1.381 0.333 0.222

Table 2. Values of χ(β) for eigenvalues of Hamiltonian (153) as a function of β, for various
parameterizations of N = b(β)n + l + c(β) (see table 1). N(ho) and set 1 give the exact result for
β = 0.

β N(ho) Set 1 Set 2

0.1 5.9 × 10−2 6.2 × 10−3 4.0 × 10−3

1 0.46 2.7 × 10−3 1.9 × 10−3

10 2.8 1.8 × 10−2 5.4 × 10−3

With this choice, b(0) = p2/p3, b(∞) = p1, c(0) = q2/q3 and c(∞) = q1. Two different
fits are presented in table 1. For set 1, only one parameter is free for each coefficient and the
following constraints are imposed: b(0) = 2, b(∞) = π/

√
3, c(0) = 3/2, c(∞) = √

3π/4.
For set 2, all parameters are free; the results found by minimization give: b(0) ≈ 1.990 close
to 2, b(∞) = 1.826 close to 1.814 (π/

√
3), c(0) ≈ 1.496 close to 1.5, c(∞) = 1.381 close

to 1.360 (
√

3π/4).
The quality of the fits can be appraised by examining the values of χ(β) shown in

table 2. It is clear that allowing a β-dependence for the coefficients b and c improves greatly
the approximate eigenvalues. Let us remark that the fit with three parameters is only slightly
better than the fit with only one parameter, and that χ(β) increases with β for the choice
N = N(ho), as expected since the potential deviates more and more from a pure quadratic one.

4.2. Improvement for quadratic + Coulomb potential

To study the case of the quadratic + Coulomb potential, we choose the following dimensionless
Hamiltonian:

H = 3p2

16
+

r2

4
− β3/2

r
. (155)

Approximate eigenvalues are given by (125). The exact result will be obtained for b(0) = 2
and c(0) = 3/2. When β → ∞, the Coulomb part dominates and we could expect that
b(∞) = 1 and c(∞) = 1. By minimizing our measure χ(β), we found the optimal values of
b(β) and c(β) for several finite values of β. The results are plotted with dots in figure 2. One
can clearly see the smooth transition between the harmonic oscillator region near zero and
the asymptotic Coulomb region. In this case, the transition occurs between two very different
potentials: r2 and −1/r . It is clear that the asymptotic region is more rapidly reached for c(β)

than for b(β). When the quantum numbers n and l increase, the size of the eigenfunctions
grows and the states become less sensitive to the Coulomb part. So, we can understand that
the influence of β on the coefficient b(β) is less significant than on c(β).

We tried to fit the numerical points with various functions and found that the best result
is obtained for exponential functions with a cubic argument, both for b(β) and c(β). The
parameterization retained is

b(β) = 1 + p1 exp(−p2(β − p3)
3), c(β) = 1 + q1 exp(−q2(β − q3)

3). (156)
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Figure 2. Best values of the coefficients b(β) and c(β) to parameterize the eigenvalues of
Hamiltonian (155): numerical fit with (151) (dots); functions (156) with set 1 of parameters from
table 3 (solid line); same with set 2 (dashed line).

Table 3. Values of parameters pi and qi for (156). Fixed parameters are marked by a *.

p1 p2 p3 q1 q2 q3

Set 1 1* 0.093 0* 1/2* 2.414 0*
Set 2 0.990 0.119 0.161 0.496 1.373 −0.136

Table 4. Values of χ(β) for eigenvalues of Hamiltonian (155) as a function of β, for various
parameterizations of N = b(β)n+l+c(β) (see table 3). N(ho) gives the exact result for β = 0, N(C)

gives the exact result for β = ∞, set 1 gives the exact result for both β = 0 and β = ∞, and set 2
gives the exact result for β = ∞.

β N(ho) N(C) Set 1 Set 2

0.5 9.6 × 10−3 0.90 2.6 × 10−3 2.3 × 10−3

1 0.11 0.75 1.9 × 10−2 1.8 × 10−2

2 3.1 0.45 0.12 0.12

With this choice, b(∞) = 1 and c(∞) = 1. Two different fits are presented in table 3. For set 1,
only one parameter is free for each coefficient and the following constraints are imposed:
b(0) = 2 and c(0) = 3/2. For set 2, all parameters are free; the results found by minimization
give: b(0) ≈ 1.991 close to 2 and c(0) ≈ 1.495 close to 1.5.

The quality of the fits can be appraised by examining the values of χ(β) shown in table 4.
Again, allowing a β-dependence for the coefficients b and c improves greatly the approximate
eigenvalues. The fits, with one parameter and three parameters, give nearly the same result.
χ(β) increases with β for the choice N = N(ho), as expected since the potential deviates
more and more from a pure quadratic one. In contrast, χ(β) decreases with β for the choice
N = N(C), as expected since the potential comes closer to a pure Coulomb one. The values
of χ(β) are large because the considered values of β are not in the asymptotic region of b(β),
as one can see in figure 2. It has been checked that χ(β) → 0 also for sets 1 and 2 for large
values of β.

4.3. Improvement for funnel potential

For the case of the funnel potential, we choose the following dimensionless Hamiltonian:

H = p2

3
+

r

3
− β4/3

r
. (157)
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Figure 3. Best values of the coefficients b(β) and c(β) to parameterize the eigenvalues of
Hamiltonian (157): numerical fit with (151) (dots); functions (158) with set 1 of parameters from
table 5 (solid line); same with set 2 (dashed line).

Table 5. Values of parameters pi and qi for (158). Fixed parameters are marked by a *.

p1 p2 p3 q1 q2 q3

Set 1 π√
3

− 1* 0.416 0*
√

3π
4 − 1* 1.245 0*

Set 2 0.783 0.459 0.237 0.369 1.168 −0.062

Approximate eigenvalues are given by (143). This choice is motived by three reasons:

• for hadronic problems [4], physical values of β varies from 0 to about 1.5;
• a comparison is possible between Hamiltonians (157) and (155) which differ by the

‘confinement’ part;
• in contrast to previous cases, β = 0 does not correspond to a full analytical case.

For β = 0, the potential is pure linear one. So, from the study performed in SSB, we can
expect that b(0) = π/

√
3 ≈ 1.814 and c(0) = √

3π/4 ≈ 1.360 is a good choice. When
β → ∞, the Coulomb part dominates and we could expect that b(∞) = 1 and c(∞) = 1. By
minimizing our measure χ(β), we found the optimal values of b(β) and c(β) for several finite
values of β. The results are plotted with dots in figure 3. One can see a smooth transition
similar to the previous case. Again, for probably the same reason, the asymptotic region is
more rapidly reached for c(β) than for b(β).

We tried to fit the numerical points with various functions and found that the best result
is obtained for a Gaussian function both for b(β) and c(β). The parameterization retained is

b(β) = 1 + p1 exp(−p2
2(β − p3)

2), c(β) = 1 + q1 exp(−q2
2 (β − q3)

2). (158)

Let us note the difference with the previous case, for which the argument of the exponential
was cubic in β and not quadratic. With this choice, b(∞) = 1 and c(∞) = 1. Two different
fits are presented in table 5. For set 1, only one parameter is free for each coefficient and
the following constraints are imposed: b(0) = π/

√
3 and c(0) = √

3π/4. For set 2, all
parameters are free; the results found by minimization give: b(0) ≈ 1.774 close to π/

√
3

(1.814) and c(0) ≈ 1.367 close to
√

3π/4 (1.360).
The quality of the fits can be appraised by examining the values of χ(β) shown in table 6

and the values of approximate results compared with exact ones presented in table 7. As in the
two previous cases, allowing a β-dependence for the coefficients b and c improves greatly the
approximate eigenvalues. The fits with one parameter and three parameters also give nearly
the same results and the behaviour of χ(β) for this case and the previous one are very similar.
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Table 6. Values of χ(β) for eigenvalues of Hamiltonian (157) as a function of β, for various
parameterizations of N = b(β)n + l + c(β) (see table 5). N(C), set 1 and set 3 give the exact result
for β = ∞.

β N(C) Set 1 Set 2

0.5 0.17 4.2 × 10−4 3.6 × 10−4

1 0.15 2.9 × 10−3 2.9 × 10−3

2 0.11 1.7 × 10−2 1.7 × 10−2

Table 7. Eigenvalues ε(β0, n, l) of Hamiltonian (157) with β0 = 0.5, for some sets (n, l). First
line: εnum(β0; n, �) from numerical integration; second line: ε(f)(β0; n, l) given by (143) with
N(β) defined by set 1; third line: ε(f)(β0; n, l) given by (143) with N(β) = N(C).

l ε(β0; 0, l) ε(β0; 1, l) ε(β0; 2, l) ε(β0; 3, l)

0 0.397 11 1.117 14 1.645 58 2.096 28
0.427 79 1.162 23 1.680 99 2.122 05
0.268 27 0.791 05 1.154 40 1.459 87

1 0.905 98 1.459 55 1.925 80 2.341 67
0.887 94 1.466 73 1.935 64 2.349 11
0.791 05 1.154 40 1.459 87 1.732 69

2 1.257 49 1.742 47 2.171 33 2.562 88
1.233 07 1.738 92 2.173 23 2.565 06
1.1544 1.459 87 1.732 69 1.983 58

3 1.554 57 1.997 27 2.399 17 2.771 68
1.529 08 1.989 37 2.397 64 2.771 83
1.459 87 1.732 69 1.983 58 2.218 33

4.4. General considerations

From the results of this section, it is clear that a good choice for the function N(β) can greatly
improve the accuracy of the energy formulae. Unfortunately, the best functional form cannot
be theoretically predicted. In the cases studied in this paper, the same form can be given to
both coefficients b(β) and c(β) for a given Hamiltonian, but with different parameters. The
behaviour for β = 0 and β → ∞ can sometimes be exactly computed.

Obviously, the parameters for coefficients b(β) and c(β) depend on the points used for the
fit but also on the particular choice of functions (151) and (152). Other definitions—relative
error instead of absolute error, different chosen quantum numbers or different chosen values of
β in summations—would have given other numbers slightly different. It is worth noting that,
for each case studied, values of χ(β) obtained directly with coefficients dmin(β) and dfit(β)

for the set 2 are generally very close.

5. Conclusions

The AFM was proposed in SSB as a tool to compute approximate analytical solutions of the
Schrödinger equation and then applied to the case of power-law radial potentials. The basic
idea underlying this method is to replace an arbitrary potential V (r), for which no analytical
spectrum is known, by an expression of the type νP (r)+g(ν), P (r) being a potential for which
analytical eigenenergies can be found, ν the auxiliary field and g(ν) a well-defined function
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of this extra parameter. This auxiliary field is such that its elimination as an operator leads
to the original Hamiltonian. If ν is seen as a number however, analytical eigenenergies and
eigenstates can be found, and the auxiliary field is eventually eliminated by a minimization on
the eigenenergies. The approximation in the AFM comes thus from the use of the auxiliary
field as a number rather than an operator.

In the present work, we have further investigated the AFM and obtained results that fall
mainly in two categories: general properties of the AFM and analytical resolution of the
Schrödinger equation with potentials of the form arλ ±brη. Let us first summarize the general
properties of the AFM that we have proved:

• The analytical expressions that are obtained for the eigenenergies by using the AFM
preserve the general scaling laws (30) in the case where P(r) is homogeneous. Thanks
to this feature, the number of relevant parameters in the Hamiltonian can be seriously
reduced in order to simplify the problem.

• Let P1(r) and P2(r) be two power-law potentials whose eigenenergies respectively read
E1(N1) and E2(N2), where N1 and N2 are terms containing the radial and orbital quantum
numbers. Then, if we apply the AFM to find the eigenenergies of potential V (r) with both
P1(r) and P2(r), the final results will have the same functional form, depending either on
N1 or on N2 following the case.

• Perturbation theory can be reformulated within the AFM. If σ is a small parameter and
if V (r) = σv(r) is a potential that can be treated in perturbation, then 〈v(r)〉 can be
equivalently replaced by v(J (ν0)) with J (ν0) the average point defined by (50), at the
first order in σ . Such a property could be useful in some cases since no integration is
needed with the AFM.

Finally, it is worth summing up the results that we obtained by solving the Schrödinger
equation with potentials of the form arλ ± brη:

• Analytical formulae have been found for several potentials that are relevant in various
domain of physics: anharmonic, quadratic plus Coulomb and funnel. To our knowledge,
it is the first time that such formulae are found. A comparison with the Kratzer and the
quadratic plus centrifugal potentials which are analytically solvable is also performed.

• By using the scaling laws, it appears that only one dimensionless parameter, denoted as
β in this work, ‘controls’ the features of the various spectra. The approximate formulae
for eigenenergies can be a complicated function of β and of a number N containing the
radial and orbital quantum numbers. This number is determined by the potential P(r)

chosen and is a priori independent of β. Nevertheless, a drastic improvement of the
formulae we computed can be obtained by replacing this term N by a function of the form
b(β)n + � + c(β), where b(β) and c(β) have to be fitted on the eigenenergies coming
from a numerical resolution of the Schrödinger equation. This has finally led us to very
accurate formulae for all the various potentials we studied.

As an outlook, we mention that more complicated potentials could be studied with the
AFM. In particular, we plan to apply this method to potentials involving an exponential, like
the Yukawa potential for example. Such a work is in progress.
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